Empfehlungen zur Ganzkörperplethysmografie

Quelle: Criée C.-P. et al.

Aktuelle Empfehlungen zur Lungenfunktionsdiagnostik

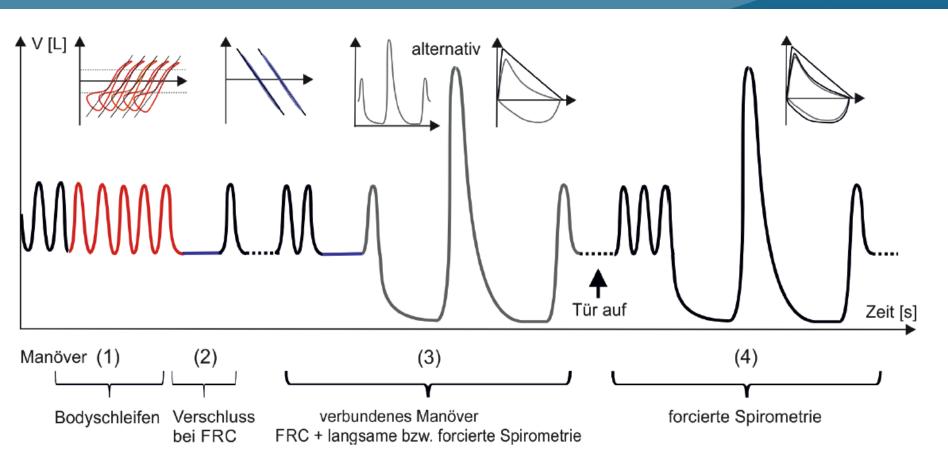
Atemwegs- und Lungenkrankheiten 2024; 50: 111-184

DOI 10.5414/ATX02776

Ein Service der Deutschen Atemwegsliga e.V.

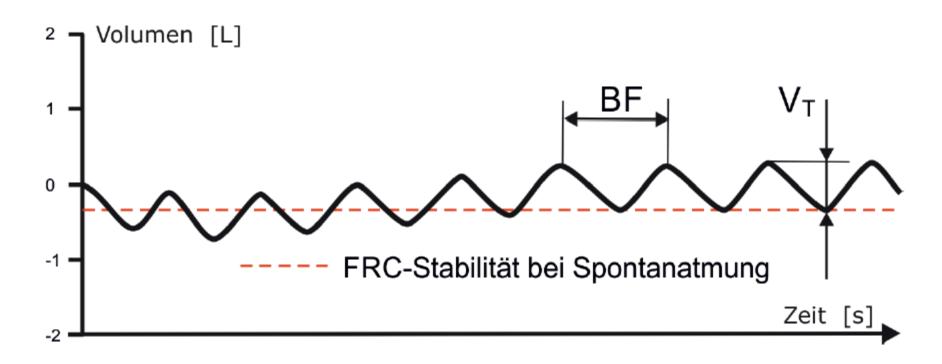
Ganzkörperplethysmografie

- informativste und umfassendste Methode zur differenzierten Lungenfunktionsdiagnostik von Patienten mit Lungen- und Atemwegserkrankungen
- spiegelbildliche Registrierung, der zur Erzeugung des Alveolardrucks innerhalb der Lunge auftretenden Kompressions- und Dekompressionsvolumina in luftdicht verschließbarer Kabine
- geringe Anforderungen an die Mitarbeit der Patienten.
- Ruheatmungsanalyse bei Kindern ab 4 Jahren möglich



Ganzkörperplethysmografie: Indikationen

- Lungenfunktionsdiagnostik von Atemwegserkrankungen (z.B. COPD, Asthma bronchiale)
- Dyspnoe, Husten und/oder Auswurf
- Screening (Gesundheitsuntersuchung)
- Früherkennung von Schäden durch inhalative Noxen
- Verdacht auf Erkrankungen von Atemwegen, Lunge oder Herz sowie muskuloskelettale Erkrankungen mit Auswirkungen auf die Atmung
- Verdacht auf Erkrankungen der Atempumpe (Atemzentrum, zugehörige Nerven und Muskeln)
- Verlaufsbeobachtung und Therapiekontrolle bronchopulmonaler Erkrankungen
- arbeitsmedizinische Überwachung und Vorsorge
- präoperative Diagnostik

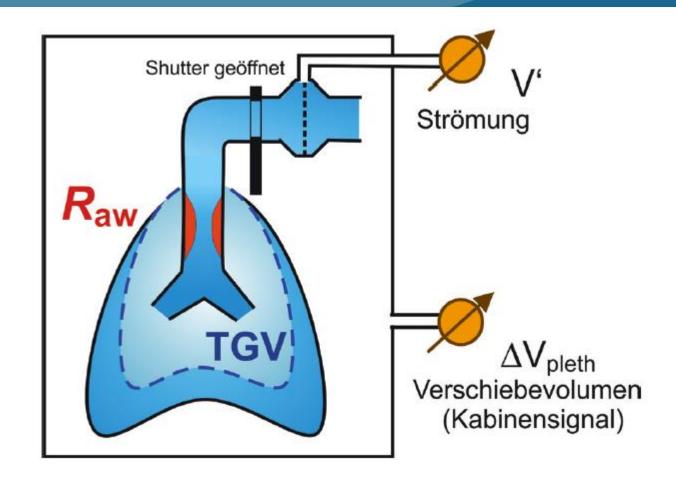

Untersuchungsschritte

(1) Aufzeichnung der Bodyschleifen, (2) Verschlussmanöver, (3) mit dem letzten Verschluss verbundene langsame, bzw. alternativ, forcierte Spirometrie, (4) forcierte Spirometrie

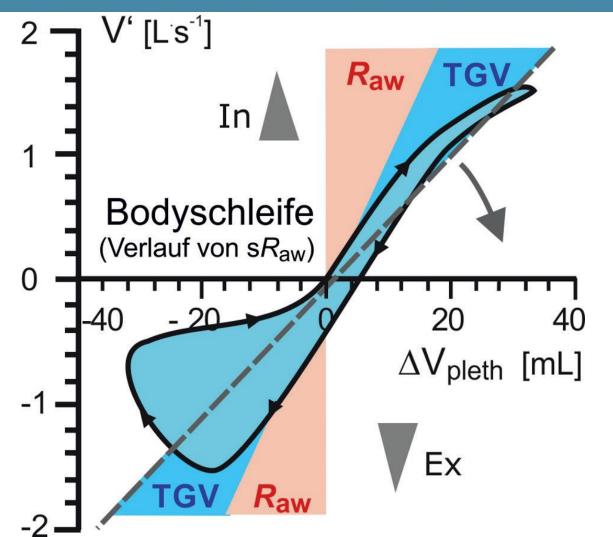
Standardisierung der Ruheatmung

Nach kurzer Adaptionsphase sind Atemzugvolumen (V_T) und Atmungsfrequenz (BF) konstant und der Patient atmet auf FRC-Niveau (rote Linie).

Dabei ist die geleistete Atmungsarbeit (WOB) minimal.


WOB = work of breathing.

Bodyschleife – 1. Untersuchungsschritt


Erfassung der Bodyschleife (= spez. Resistance) bei geöffnetem Shutter

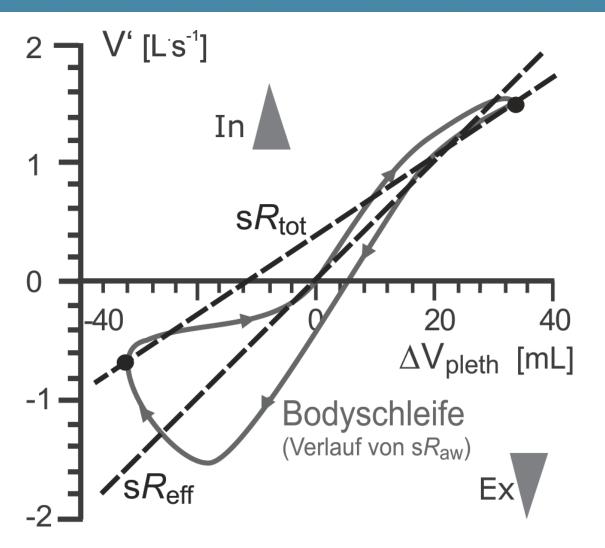
Atemwegswiderstand (Raw) und thorakales Gasvolumen (TGV) gehen in die Messung ein.

auf BTPS-Bedingungen kompensierte Bodyschleife

- Verlauf des spezifischen Atemwegswiderstandes (sR_{aw}) aus der simultanen Aufzeichnung von Mundströmung (V') und Kabinen-Verschiebevolumen (ΔV_{pleth})
- Für die Rechtsdrehung (siehe Strichlinie und Pfeil) der Bodyschleife sind R_{aw} und TGV verantwortlich.

Qualitätskontrolle Bodyschleife

Bodyschleifen	Instruktion gleichmäßiger Spontanatmung ohne weitere Vorgaben
Qualitätskontrolle	hohe Reproduzierbarkeit der letzten 5, auf BTPS-Bedingungen kompensierten, Bodyschleifen anstreben
Ergebniswert	Median aller gültigen Bodyschleifen

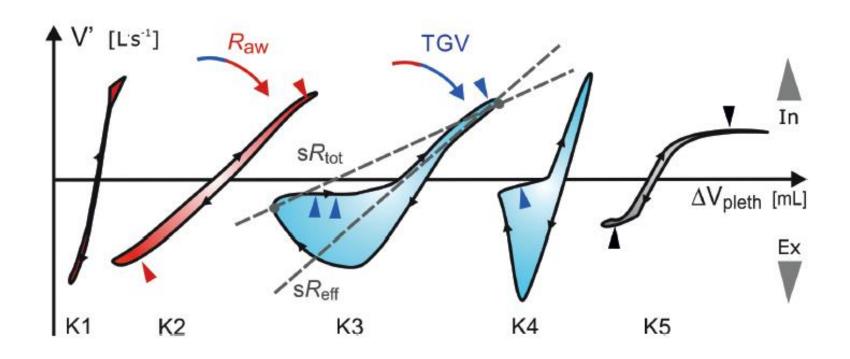

Klassifikation der spezifischen Atemwegswiderstände sR_{eff} und sR_{tot}

- Wegen der weitgehenden Unabhängigkeit der Parameter von größen-, alters-, und geschlechtsspezifischen Merkmalen wird anstelle des Sollwertvergleichs ein Grenzwertbezug empfohlen.
- Beachte: Bei kombiniert obstruktiv-restriktiven Krankheitsbildern sind anstelle der sR_{aw} -Klassifikation der Atemwegswiderstand R_{aw} und die totale Lungenkapazität TLC getrennt zu klassifizieren.

Schweregradeinteilung sR _{eff} , sR _{tot}	Jugendliche/Erwachsene (> 10 Jahre)	Kinder (≤ 10 Jahre)
normal	≤ 1,2 kPa·s	≤ 1 kPa·s
leicht	> 1,2 - 2,0 kPa·s	> 1 − 2,0 kPa·s
mittelschwer	> 2,0 - 4,0 kPa·s	> 2,0 - 4,0 kPa·s
schwer	> 4 kPa·s	> 4 kPa·s

sR_{eff}- und sR_{tot}-Approximation

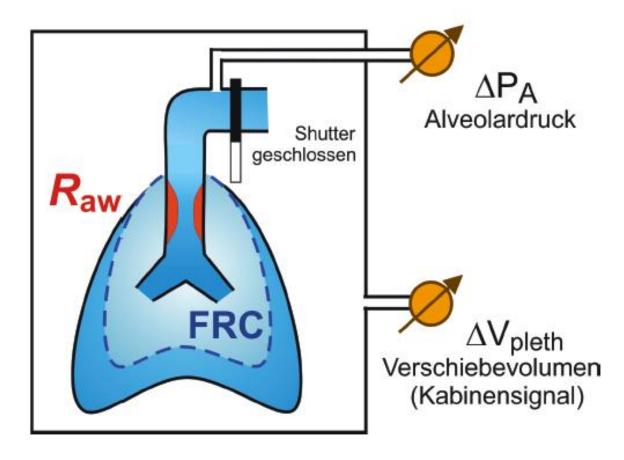
sR_{eff} -Approximation:


- Quotient aus spezifischer Atmungsarbeit (sWOB) und Flächenintegral der Fluss-Volumen-Kurve der Normalatmung (AREA_{fv})
- repräsentiert bei geringer Streuung den tatsächlichen Aufwand für die Atmung.

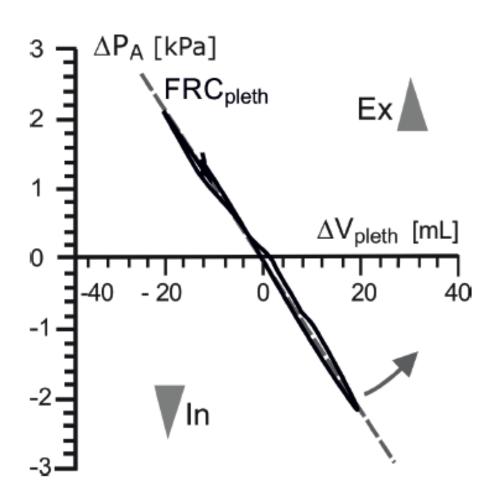
sR_{tot}-Approximation:

 verbindet die auf der Bodyschleife liegenden maximalen Verschiebevolumina

Charakteristische Formen der Bodyschleife



K1 normale Lungenfunktion, K2 zentrale Obstruktion, K3 periphere Obstruktion, K4 endexspiratorisches Closing bzw. Zwerchfellhochstand, K5 extrathorakale Obstruktion


Verschluss bei FRC- 2. Untersuchungsschritt

Bestimmung der funktionellen Residualkapazität (FRC_{pleth}) bei geschlossener Kabinentür und sich kurzzeitig verschließendem Shutter

funktionelle Residualkapazität

- simultane Aufzeichnung von Alveolardruck (ΔPA) und Kabinen-Verschiebevolumen (ΔVpleth) zeigt eine Verschlussdruckkurve, aus der das FRC_{pleth} abgeleitet wird.
- Vergrößerung des Lungenvolumens bewirkt eine Linksdrehung der Schleife (Pfeil)

Qualitätskontrolle Verschlussdruckkurve

Verschlussdruckkurve	positive und negative Druckauslenkung (ΔPA) registrieren!
Qualitätskontrolle	Auf Reproduzierbarkeit achten! Das aus mindestens 3 Verschlussmanövern jeweils abgeleitete FRC _{pleth} sollte um weniger als 5% streuen. Die Form der Verschlussdruckkurven, ausgenommen Artefakte, hat eine geringere Relevanz.
Ergebniswert	Median der gültigen Verschlussdruckkurven
Beachte	Die Qualität der FRC_{pleth} bestimmt unmittelbar die Güte des von ihr abgeleiteten Atemwegswiderstandes R_{aw} !

Atemwegswiderstand – Ableitung aus dem 1. und 2. Untersuchungsschritt

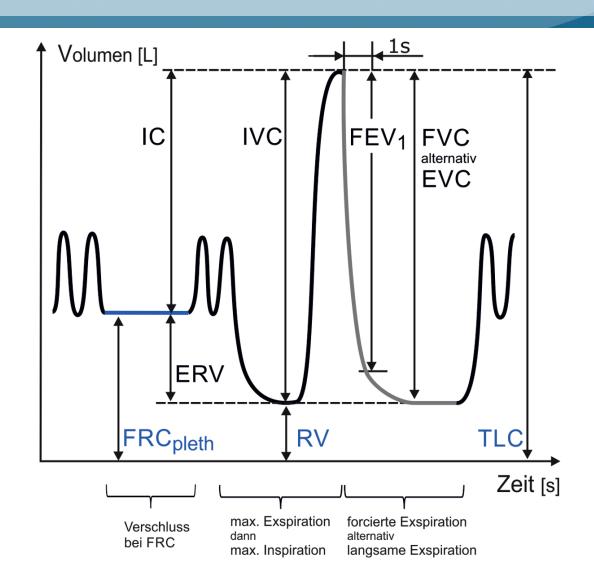
- effektiver Atemwegswiderstand nach Matthys:
 - bewertet in erster Linie die großen, leitenden Atemwege

$$R_{\text{eff}} = \frac{\text{s}R_{\text{eff}}}{(\text{FRC}_{\text{pleth}} + \frac{\text{V}_{\text{T}}}{2})}$$

- totaler Atemwegswiderstand nach Ulmer:
 - zusätzliche Berücksichtigung des endexspiratorischen Verhaltens der Atemwege
 - höhere Streuung!

$$R_{\text{tot}} = \frac{\text{s}R_{\text{tot}}}{(\text{FRC}_{\text{pleth}} + \frac{\text{v}_{\text{T}}}{2})}$$

Klassifikation der Atemwegswiderstände R_{eff} und R_{tot} mittels Z-Score


Grenzwertbezug bei Erwachsenen und im Sollwertvergleich bei Kindern und Jugendlichen

Schweregrade	R _{eff} , R _{tot} in Z-Score Kinder/Jugendliche /Erwachsene	R _{eff} , R _{tot} Erwachsene (> 18 Jahre)	R _{eff} , R _{tot} %Soll Kinder/Jugendliche (≤ 18 Jahre)
normal	≤ 1,645 (ULN)	≤ 0,3 kPa ·s·l ⁻¹	R _{eff} , R _{tot} ≤ oberer Grenzwert (ULN
leicht	> 1,645 – 2,5	> 0,3 - 0,5 kPa·s·l ⁻¹	> 150 – 200%
mittelschwer	> 2,5 - 4,0	> 0,5 - 1,0 kPa·s·l ⁻¹	> 200 – 250%
schwer	> 4,0	> 1,0 kPa·s·l ⁻¹	> 250%

Der Atemwegswiderstand zeigt, ob die Bronchien verengt sind und deshalb eine vermehrte Kraftanstrengung zur Atmung erforderlich ist.

"verbundenes Manöver" – 3. Untersuchungsschritt

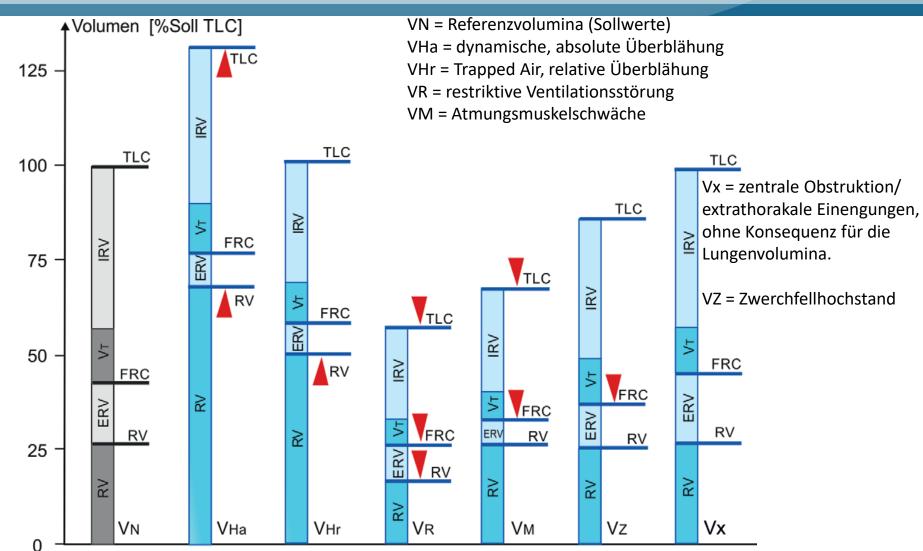
Qualitätskontrolle des verbundenen Manövers

verbundenes Manöver	ERV- und IVC-Manöver sollten jeweils in einem Plateau münden!
Qualitätskontrolle von RV und TLC	bei unzureichender Anstrengung: Manöver wiederholen
Ergebniswert	Maxima der gültigen ERV- bzw. IVC - Registrierungen, ERV_{max} , IVC_{max}
beachte	Güte der FRC _{pleth} , insbesondere des ERV bestimmen die Qualität von RV und TLC!

Klassifikation der totalen Lungenkapazität (TLC)

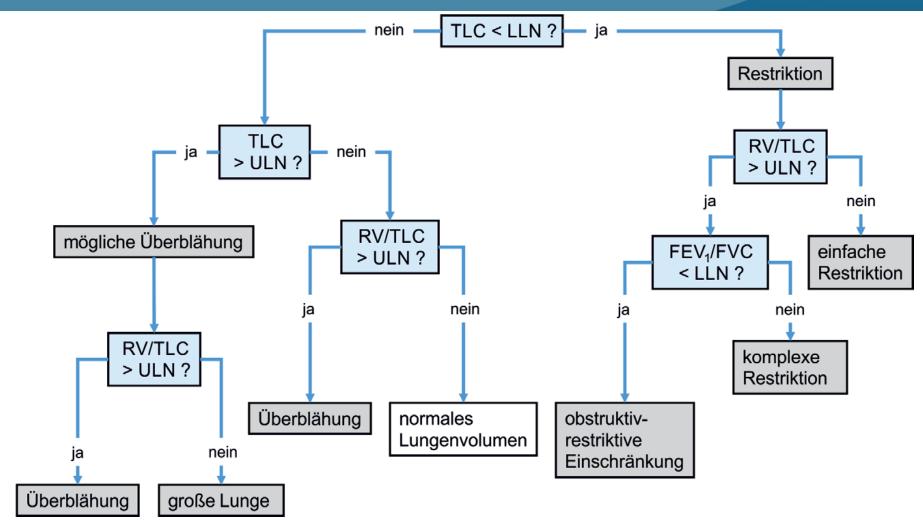
mittels Z-Score und im Sollwertvergleich bei Kindern und Erwachsenen.

Schweregrade der Restriktion	TLC in Z-Score	TLC in % Soll
normal	≥ -1,645 (LLN)	TLC > unterer Grenzwert (LLN)
leicht	< -1,645 bis -2,5	> 70%
mittelschwer	< -2,5 bis -4,0	< 70-50%
schwer	< -4,0	< 50%


Klassifikation der Überblähungsparameter

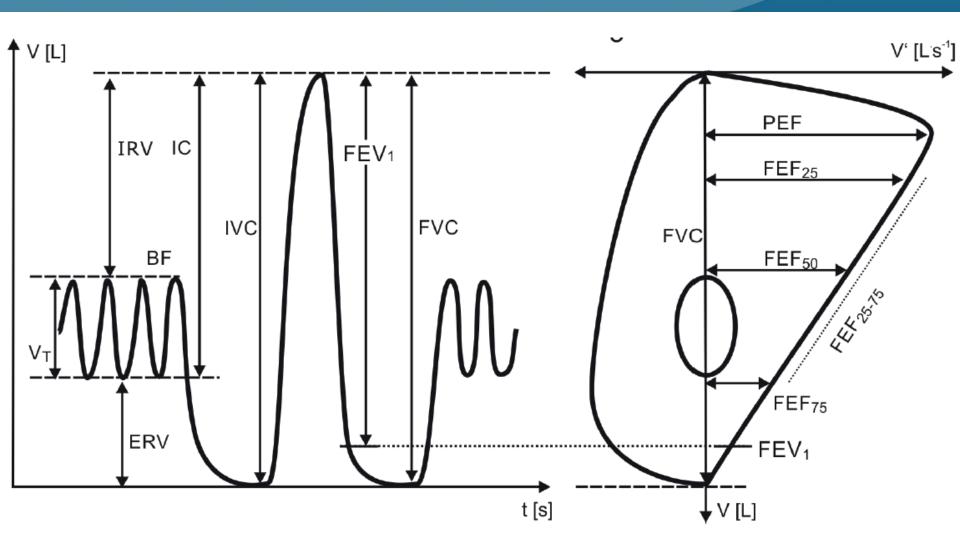
Residualvolumen (RV) und RV im Verhältnis zur totalen Lungenkapazität (RV/TLC) in %Soll und mittels Z-Score.

Schweregrad der Überblähung	RV & RV/TLC in Z-Score	RV in %Soll	RV/TLC in %
normal	≤ 1,645 (ULN)	RV ≤ oberer Grenzwert (ULN)	RV/TLC ≤ oberer Grenzwert (ULN)
leicht	> 1,645 – 2,5	≤ 140%	≤ 40%
mittelschwer	> 2,5 - 4,0	> 140 - 170%	> 40 - 60%
schwer	> 4,0	> 170%	> 60%



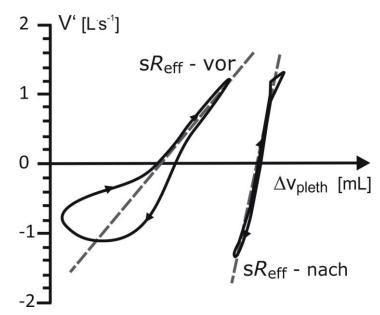
Lungenvolumina bei verschiedenen Krankheitsbildern

Interpretation der Lungenvolumina


Forcierte Spirometrie – 4. Untersuchungsschritt

Hinweise zur Durchführung, Qualitätsbewertung und klinischen Interpretation der Untersuchungsergebnisse der forcierten Spirometrie:

Siehe Empfehlungen zur Spirometrie.


Fluss-Volumen-Messung zur Bestimmung wichtiger statischer und dynamischer Volumina und Flüsse

Bestimmung der bronchialen Hyperreagibilität

- Bewertung des spezifischen Atemwegswiderstandes vor (sR_{eff}-vor) und nach (sR_{eff}-nach) Inhalation eines Bronchodilatators
- Typisch für Asthma bronchiale: teilweise bis vollständige Reversibilität von s $R_{\rm eff}$

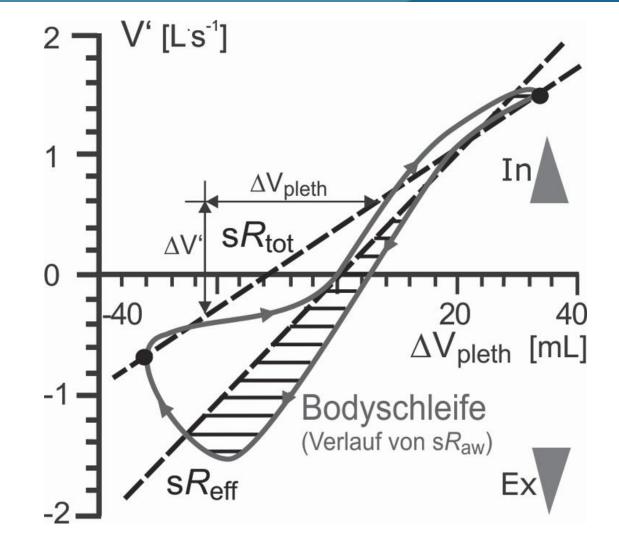
Bewertung der Reversibilitätstestung

Reversibilitäts- testung	sR _{eff}	Reff, FRC _{pleth}
keine Reversibilität	ohne Veränderung	$\Delta R_{\rm eff} < 20\%$
partielle Reversibilität	verkleinert im Vergleich zur Vormessung	$\Delta R_{\rm eff} \ge 20 - 50\%$
vollständige Reversibilität	im Normbereich	R _{eff} und FRC _{pleth} im Normbereich

Fazit

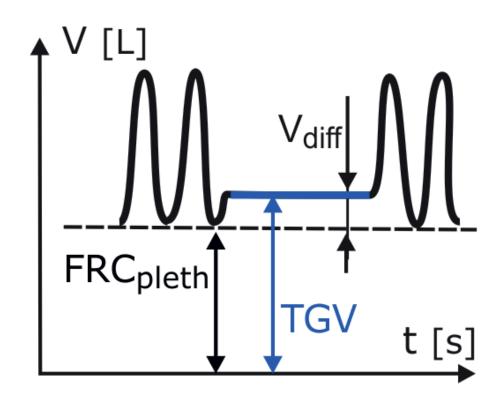
Im Gegensatz zur Spirometrie ermöglicht die Ganzkörperplethysmographie eine sichere Unterscheidung zwischen obstruktiven und restriktiven Ventilationsstörungen bzw. einer Kombination aus beiden.

Trendbeobachtungen, Bronchodilatator- und Provokationstests sind möglich.


Anlage: Definition Verschiebevolumen

- Das Verschiebevolumen ist der Betrag des Lungenvolumens, um den es sich bei Exspiration durch Kompression verringert, bzw. durch Dekompression während der Inspiration erhöht.
- Ein Lungengesunder mit einem Lungenvolumen von 3,5 l bei Normalatmung ein maximales Verschiebevolumen von 10 ml.

Bodyschleife mit Angabe der beiden wichtigsten Approximationen


- sR_{eff} (schraffierter Bereich) halbiert die Fläche der Bodyschleife
- sR_{tot} entspricht einer Geraden, die das maximale inspiratorische Verschiebevolumen (ΔV_{pleth}) mit dem Maximum des exspiratorischen Verschiebevolumens (Punkte) verbindet.

TGV liegt messtechnisch

- oberhalb FRC_{pleth}, da die Atemumkehr erst nach der eingeleiteten Inspiration erkannt werden kann
- Vom TGV wird deshalb das bis
- zum Verschluss eingeatmete Volumen V_{diff} subtrahiert.

